Riddle of how ancient animals survived in the Ice Age

How did life survive the most severe ice age? A team has found the first direct evidence that glacial meltwater provided a crucial lifeline.

Researchers are now found the riddle of how ancient animals survived, A McGill University-led research team has found the first direct evidence that glacial meltwater provided a crucial lifeline to eukaryotes during Snowball Earth, when the oceans cut off from life-giving oxygen, answering a question puzzling scientists for years.

Researchers studied iron-rich rocks left behind by glacial deposits in Australia, Namibia, and California to get a window into the environmental conditions during the ice age.

Using geological maps and clues from locals, they hiked to rock outcrops, navigating challenging trails to track down the rock formations.

By examining the chemistry of the iron formations in these rocks, the researchers were able to estimate the amount of oxygen in the oceans around 700 million years ago and better understand the effects this would have had on all oxygen-dependent marine life, including the earliest animals like simple sponges.

“The evidence suggests that although much of the oceans during the deep freeze would have been uninhabitable due to a lack of oxygen, in areas where the grounded ice sheet begins to float there was a critical supply of oxygenated meltwater. This trend can be explained by what we call a ‘glacial oxygen pump’; air bubbles trapped in the glacial ice released into the water as it melts, enriching it with oxygen.

Around 700 million years ago, the Earth experienced the most severe ice age of its history, threatening the survival of much of the planet’s life. Previous research has suggested that oxygen-dependent life may have restricted to meltwater puddles on the surface of the ice, but this study provides new evidence of oxygenated marine environments.

The fact that the global freeze occurred before the evolution of complex animals suggests a link between Snowball Earth and animal evolution. These harsh conditions could have stimulated their diversification into more complex forms.

Lechte points out that while the findings focus on the availability of oxygen, primitive eukaryotes would also have needed food to survive the harsh conditions of the ice age.

Further research needed to explore how these environments might have sustained a food web. A starting point might be modern ice environments that host complex ecosystems today.

This study solves two mysteries about the Snowball Earth at once.

It not only explains how early animals may have survived global glaciation but also explains the return of iron deposits in the geological record after an absence of over a billion years.


The research was published in McGill University

LEAVE A REPLY

Please enter your comment!
Please enter your name here