Nitrogen is a key nutrient that enables plants to grow, As food demand rises due to growing and changing populations around the world, increasing crop production has been a vital target for agriculture and food systems researchers who are working to ensure there is enough food to meet global need in the coming years.

Nitrogen is a key nutrient that enables plants to grow. Plants like legumes are able to provide their own through a symbiotic relationship with bacteria that are capable of fixing nitrogen from the air and putting it into the soil, which is then drawn up by the plants through their roots.

Other types of crops including major food crops such as corn, wheat, and rice typically rely on added fertilizers for nitrogen, including manure, compost, and chemical fertilizers. Without these, the plants that grow are smaller and produce less grain.

Over 3.5 billion people today depend on chemical fertilizers for their food. Eighty percent of chemical nitrogen fertilizers today are made using the Haber-Borsch process, which involves transforming nitrile gas into ammonia. While nitrogen fertilizer has boosted agriculture production in the last century, this has come with some significant costs.

First, the Haber-Borsch process itself is very energy- and fossil fuel-intensive, making it unsustainable in the face of a rapidly changing climate.

Second, using too much chemical fertilizer results in nitrogen pollution. Fertilizer runoff pollutes rivers and oceans, resulting in algae blooms that suffocate marine life. Cleaning up this pollution and paying for the public health and environmental damage costs the United States $157 billion annually.

Third, when it comes to chemical fertilizers, there are problems with equity and access. These fertilizers are made in the northern hemisphere by major industrialized nations, where postash, a main ingredient, is abundant. However, transportation costs are high, especially to countries in the southern hemisphere. So, for farmers in poorer regions, this barrier results in lower crop yield.

These environmental and societal challenges pose large problems, yet farmers still need to apply nitrogen to maintain the necessary agriculture productivity to meet the world’s food needs, especially as population and climate change stress the world’s food supplies. So, fertilizers are and will continue to be a critical tool.

The strategy they have developed is to target the specific genes in the nitrogen-fixing bacteria that operate symbiotically with legumes, called the nif genes. These genes cause the expression of the protein structures (nitrogenase clusters) that fix nitrogen from the air. If these genes were able to be successfully transferred and expressed in cereal crops, chemical fertilizers would no longer be needed to add needed nitrogen, as these crops would be able to obtain nitrogen themselves.

They are unique in that they have their own genetic data and have also maintained many similarities to modern-day prokaryotes. As a result, they are excellent candidates for nitrogenase transfer. Majer explains, “It’s much easier to transfer from a prokaryote to a prokaryote-like system than reengineer the whole pathway and try to transfer to a eukaryote.”

Beyond gene structure, these organelles have additional attributes that make them suitable environments for nitrogenase clusters to function. Nitrogenase requires a lot of energy to function and both chloroplasts and mitochondria already produce high amounts energy in the form of ATP for the cell.

Nitrogenase is also very sensitive to oxygen and will not function if there is too much of it in its environment. However, chloroplasts at night and mitochondria in plants have low-oxygen levels, making them an ideal location for the nitrogenase protein to operate.

While the team found devised an approach for transforming eukaryotic cells, their project still involved highly technical biological engineering challenges. Thanks to the J-WAFS grants, the Voigt lab has been able to collaborate with two specialists at overseas universities to obtain critical expertise.

They made headway in targeting nitrogenase to mitochondria and were able to express a complete NifDK tetramer a key protein in the nitrogenase cluster in yeast mitochondria. Despite these milestones, more work is yet to be done.

With these milestones under their belt, these researchers have made great advances, and will continue to push torward the realization of this transformative vision, one that could revolutionize cereal production globally.

The study was published in Massachusetts Institute of Technology